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Abstract 44 

2-deoxy-2-[18F]fluoro-d-glucose positron-emission-tomography (FDG-PET) is widely 45 

used to study cerebral glucose metabolism. We investigated if the FDG-PET signal is 46 

directly influenced by microglial glucose uptake in mouse models and patients with 47 

neurodegenerative diseases. Using a novel approach for cell sorting after FDG injection 48 

we find that, at cellular resolution, microglia display higher glucose uptake than 49 

neuronal cell bodies and astrocytes. Notably, alterations in microglial glucose uptake 50 

are responsible for both, the FDG-PET signal decrease in Trem2-deficient mice and the 51 

FDG-PET signal increase in mouse models for amyloidosis. Thus, opposite microglial 52 

activation states determine the differential FDG uptake. Consistently, patients with 53 

Alzheimer’s disease (n=12) and 4-repeat tauopathy (n=21) also exhibit a positive 54 

association between glucose uptake and microglial activity as determined by [18F]GE-55 

180 18kDa translocator protein PET in preserved brain regions, indicating that the 56 

cerebral glucose uptake in humans is also significantly influenced by microglial activity. 57 

Our findings suggest that microglia activation states are responsible for FDG-PET 58 

signal alterations in patients with neurodegenerative diseases and mouse models for 59 

amyloidosis. Microglial activation states must therefore be considered when performing 60 

FDG-PET. 61 

62 
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Introduction 63 

Brain energy metabolism underlies complex mechanisms that can be altered during aging and 64 

in neurodegenerative conditions (1). FDG-PET measures of brain glucose uptake are widely 65 

used to detect regional patterns of hypometabolism typical for Alzheimer's disease (AD) 66 

patients (2). Consequently, FDG-PET was included as a measure of neuronal injury in the 67 

National Institutes on Aging-Alzheimer’s Association (NIA-AA) research framework for AD (3). 68 

Regional reductions of glucose uptake are also used for the differential diagnosis of other 69 

neurodegenerative disorders, such as different etiologies of Parkinsonism (4). However, FDG-70 

PET is lacking cellular resolution and the identity of the cell types contributing to the PET signal.  71 

It is assumed that the FDG-PET signal derives predominantly from neuronal synaptic activity 72 

(5-7). However, loss of function mutations in Trem2 (triggering receptor expressed on myeloid 73 

cells 2), a microglial gene involved in metabolism and activation (8-11), strongly impairs 74 

cerebral glucose uptake as measured by FDG-PET (12). On the contrary, an increased FDG-75 

PET signal is frequently detected in independent mouse models for amyloidosis accompanied 76 

by microglial activation, where microglia is switching from homeostatic to disease associated 77 

microglia (DAM) (13-15). In a similar vein, FDG-PET studies in both autosomal dominant and 78 

sporadic AD have shown transient regional increases in the FDG-PET signal during early 79 

phases of β-amyloid (Aβ) accumulation (16-20), without causal explanation so far. We have 80 

shown that microglia activity is positively associated with cerebral FDG uptake in the aging and 81 

amyloid mouse models  (13, 21). However, it is unclear if neurons and astrocytes increase 82 

their glucose uptake upon microglial activation, or if the increased FDG signal is directly 83 

derived from activated microglia. Similiarly, although it is well known that  microglia increase 84 

their metabolic output in the setting of inflammation (22, 23), how much of the FDG-PET signal 85 

is related to activated microglia in disease conditions is largely unknow. We aimed to elucidate 86 

the cell specific uptake of glucose in brain. We hypothesized that microglia might be 87 

responsible for a much higher proportion of the brain's glucose uptake than hitherto estimated, 88 

and that FDG-PET signals may therefore reflect microglia activity. 89 

90 
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Results 91 

Pharmacological depletion of microglia ameliorates increased glucose uptake in mice with 92 

amyloidosis 93 

First, we aimed to determine if and to what degree microglia are responsible for the elevated 94 

FDG-PET signal in the PS2APP mice (24), a mouse model for amyloidosis. To this end, 95 

microglia were depleted in PS2APP and wild-type (WT) mice by applying PLX5622 (25), an 96 

orally active, brain penetrant CSF1R inhibitor, at 1200 ppm in chow for seven weeks.  97 

Longitudinal FDG-, TSPO- and Aβ-PET measurements were performed at baseline and at the 98 

end of the study. Immunostaining using an antibody against the microglial-marker Iba1 99 

confirmed a nearly complete depletion of microglia (-96%, P < 0.0001) in WT animals and a 100 

strong reduction of microglia (-66%, P < 0.0001) in PS2APP mice (Fig. S1A & B). Moreover, 101 

we confirm that PS2APP mice showed more microglia in both cortical and hippocampal regions 102 

due to amyloid-induced microgliosis (Fig. S1A & B). As expected, the PS2APP mice showed 103 

an elevated FDG-PET signal (13) in vehicle-treated groups when compared to WT (+17.6%, 104 

P < 0.0001) (Fig. 1A & B). PLX5622 treatment strongly reduced glucose uptake in PS2APP 105 

when compared to vehicle-treated PS2APP (-25.5%, P < 0.0001), even below the level of 106 

vehicle-treated WT animals (-12.4%, P < 0.0001) (Fig. 1A & B). This suggests that the FDG-107 

PET signal elevation is substantially driven by microglia. To exclude anesthesia as a major 108 

confounder of our findings, we performed FDG-PET imaging after awake injection of FDG in 109 

PLX5622 or vehicle-treated PS2APP animals. PLX5622 treatment again strongly reduced 110 

glucose uptake in awake injected animals (-34%, P = 0.0084) (Fig. S2A & B). The FDG-PET 111 

signal in WT mice was also significantly reduced after PLX5622 treatment (-8.9%, P = 0.0154) 112 

(Fig. 1A & B), indicating that microglia also contribute significantly to glucose uptake even 113 

under physiological condition. To search for a potential correlation of microglia activation and 114 

cerebral glucose uptake, we performed TSPO-PET measurements. The TSPO-PET signal in 115 

PS2APP was likewise increased in vehicle-treated individuals when compared to vehicle-116 

treated WT (+62.4%, P < 0.0001) but strongly decreased after PLX5622 treatment (-21.4%, P 117 

< 0.0001) (Fig. 1C & D). Changes from baseline between FDG-PET and TSPO-PET were 118 
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highly associated with each other (R = 0.6978, P = 0.0027) in PS2APP mice with PLX5622 119 

treatment (Fig. 1E). To exclude potential neurotoxic effects after PLX5622 treatment, we 120 

performed terminal measures of synaptic density. Interestingly there were even higher levels 121 

of the synaptic density marker SV2A in PS2APP mice after microglia depletion (Fig. S1C & D). 122 

WT mice did not show differences between treatment and vehicle groups (Fig. S1C & D). The 123 

relatively short treatment duration did not lead to differences in fibrillar amyloidosis of PS2APP 124 

mice (SUVr: 0.92 ± 0.04 vs. 0.93 ± 0.02; P = n.s.) as measured by Aβ-PET (Fig. S2C & D). We 125 

conclude that the increased glucose uptake in vivo is completely ameliorated when large 126 

proportions of microglia cells are removed by CSF1R inhibition in PS2APP mice. Interestingly, 127 

even the basal glucose uptake in WT mice is reduced significantly upon microglia depletion. 128 

These data indicate that a relevant share of glucose uptake, as measured by in vivo FDG-PET, 129 

is related to microglia under physiological condition. Moreover, activated microglia drive the 130 

hitherto unexplained FDG-PET signal increase in the mouse model for amyloidosis. 131 

132 
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Figure 1 133 

 134 

Figure 1 Pharmacological depletion of microglia ameliorates increased glucose uptake in mice 135 
with amyloidosis 136 
(A). Coronal and axial slices show group averages of FDG-PET (SUV) per group projected upon a 137 
standard MRI T1 atlas. SUV: standardized uptake value.  138 
(B). Quantification of cortical glucose uptake measured by in vivo FDG-PET. Mean ± s.e.m. of n = 7-17. 139 
One-way ANOVA P < 0.0001. *P < 0.05, ****P < 0.0001. 140 
(C). Coronal and axial slices show group averages of TSPO-PET (SUV) per group projected upon a 141 
standard MRI T1 atlas. 142 
(D). Quantification of cortical microglial activity measured by in vivo TSPO-PET. Mean ± s.e.m. of n = 6-143 
17. One-way ANOVA P < 0.0001. **P < 0.01, ***P < 0.001, and ****P < 0.0001. 144 
(E). Correlation of the changes from baseline between FDG-PET and TSPO-PET for PS2APP PLX5622 145 
and vehicle-treated groups. PS2APP PLX5622 group: R = 0.6978, P = 0.0027; PS2APP vehicle: R = 146 
0.5661, P = 0.1435.  147 
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 148 
Trem2 dependent amelioration of increased glucose uptake in mice with amyloidosis 149 

We further confirmed our results using a Trem2-deficient mouse model for amyloidosis (Trem2-150 

/- APPPS1) (26), where microglia showed an increased homeostatic signature and failed to 151 

acquire the DAM signature (8, 27). Glucose uptake and microglia activation were monitored 152 

longitudinally from 6 to 12 months of age using FDG- and TSPO-PET. Importantly, similar to 153 

the microglia depletion model, a significant reduction of longitudinal increases in cerebral 154 

glucose uptake was observed in Trem2-/- APPPS1 when compared to Trem2+/+ APPPS1 (-155 

13.4%, P < 0.0001) (Fig. 2A & B). At 12 months of age, glucose uptake was increased in 156 

Trem2+/+ APPPS1 mice when compared to WT (+17.2%, P < 0.0001), but not in Trem2-/- 157 

APPPS1 (Fig. 2A & B). TSPO-PET data of these models were available from our previously 158 

published findings and showed a 4% TSPO-PET decrease at 6 months of age and a 20% 159 

TSPO-PET decrease at 12 months of age in Trem2-/- APPPS1 when compared to Trem2+/+ 160 

APPPS1 (9). Longitudinal changes between FDG-PET and TSPO-PET were associated with 161 

each other (R = 0.5913, P = 0.0333) in APPPS1 mice (Fig. 2C). Trem2-/- mice showed the 162 

expected FDG-PET signal decrease (-10.6%, P = 0.0023) in comparison to WT mice, which 163 

was anticipated due to findings in the Trem2 p.T66M model (28). To exclude changes in 164 

cerebral blood flow as a major confounder of the correlations between glucose uptake and 165 

microglial activation, we performed dynamic FDG-PET imaging (0-60 min) and dynamic TSPO-166 

PET imaging (0-90 min) in an aged cohort of Trem2-/- APPPS1 and Trem2+/+ APPPS1 mice 167 

(15.5 months). Here, the calculated volumes of distribution (VT) of FDG- and TSPO-PET were 168 

positively correlated with each other (R = 0.7838, P = 0.0219) (Fig. S3A-C). Thus, a genetically 169 

determined paradigm of microglia dysfunction confirmed the effects observed in the 170 

pharmacological microglia depletion model and suggests that the FDG-PET signal is 171 

substantially affected by the microglial activity state. 172 

173 
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Figure 2 174 

 175 

Figure 2 Trem2 dependent amelioration of the increased glucose uptake in mice with 176 
amyloidosis 177 
(A). Coronal and axial slices show group averages of FDG-PET (SUV) per group projected upon a 178 
standard MRI T1 atlas. 179 
(B). Quantification of cortical glucose uptake measured by in vivo FDG-PET at the ages of 6 and 12 180 
months for Trem2+/+ APPPS1, Trem2-/- APPPS1, WT, and Trem2-/- animals. Two-way ANOVA P = 181 
0.0014. Bonferroni' multiple comparisons test, 6 months old (6M) Trem2+/+APPPS1 vs. WT P = 0.0008; 182 
12 months old (12M) Trem2+/+ APPPS1 vs. Trem2-/- APPPS1 P < 0.0001; Trem2+/+APPPS1 vs. WT P < 183 
0.0001; WT vs. Trem2-/-  P = 0.0023; Trem2-/- APPPS1 vs. WT nonsignificant. **P < 0.01, ***P < 0.001, 184 
and ****P < 0.0001. 185 
(C). Correlation of the changes between FDG-PET and TSPO-PET in Trem2+/+ APPPS1, Trem2-/- 186 
APPPS1 animals. R = 0.5913, P = 0.0333.  187 



9 
 

Microglia activation state determines the FDG uptake  188 

Subsequently, based on the longitudinal PET data, we explored the proportions of FDG uptake 189 

in different cell types of the brain. To this end, we injected FDG in living mice, and 30 minutes 190 

post-injection, different cell types were isolated for gamma emission measures (Fig. 3A). The 191 

identities of the isolated cells were confirmed by western blots using antibodies against Tuj1, 192 

GFAP, and Iba1 (Fig. S4A). Gamma emission of specific cell types, as well as the depleted 193 

fractions, were subsequently recorded as a direct measure of in vivo glucose uptake and 194 

gamma counts were normalized to live cell numbers. Strikingly, microglia showed by far the 195 

highest FDG uptake (6.38E-7% ± 7.94E-8%), exceeding astrocyte uptake by 12-fold (5.17E-196 

8% ± 4.68E-9%, P < 0.0001) and neuron uptake by 28-fold (2.21E-8% ± 2.04E-9%, P < 197 

0.0001), after normalization to live cell number and to gamma emission from the whole brain 198 

(Fig. 3B). Depleted cell fractions confirmed these findings and indicated higher FDG uptake 199 

per individual cell in neuron-depleted (1.70E-7% ± 1.707E-8%, P < 0.0001) and astrocyte-200 

depleted (2.27E-7% ± 1.25E-8%, P < 0.0001) fractions when compared to microglia-depleted 201 

fractions (5.09E-8% ± 3.99E-9%) (Fig. 3C). Dose-dependency of cellular FDG uptake was 202 

verified in neurons (R = 0.9344, P = 0.0017) (Fig. S4B), indicating that gamma emission is 203 

proportional to the actual glucose uptake.  204 

Trem2 deficiency reduces metabolic fitness in microglia (10), and cerebral glucose uptake is 205 

reduced in a Trem2 loss of function mutant (12) and in Trem2-/- mice (Fig. 2A & B). To explore 206 

the cell-type-specific contribution of impaired glucose uptake, we isolated neurons, astrocytes, 207 

and microglia from Trem2-/- mice after FDG injection. Glucose uptake was reduced in Trem2-/- 208 

microglia when compared to microglia isolated from WT animals (1.91E-7% ± 4.91E-9% vs. 209 

5.38E-7% ± 5.34E-8%, P = 0.0001) (Fig. 3D). In contrast, FDG uptake was unchanged in 210 

neurons and astrocytes from Trem2-/- animals indicating that the reduced glucose uptake in 211 

microglia may be responsible for the reduced FDG-PET signal in Trem2-deficient animals. 212 

Contrary to the FDG-PET decrease detected in Trem2-deficient models, FDG-PET increase is 213 

frequently observed in mouse models for amyloidosis (13-15). To further interrogate the 214 
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glucose uptake in an independent mouse model for amyloidosis, we measured FDG-PET in 215 

the knock-in model AppNL-G-F (APPki) (29). Similar to PS2APP  and APPPS1, we confirmed the 216 

cortical FDG-PET increase in APPki mice (29) (Fig. S5A & B). We then asked if the FDG-PET 217 

increase is driven by higher FDG uptake of microglia. Microglia isolated from APPki animals 218 

showed higher FDG uptake (1.01E-6 ± 9.65E-8%; per cell) when compared to microglia from 219 

WT animals (5.88E-7 ± 7.24E-8%, P = 0.0016; per cell) (Fig. 3E). No changes in FDG uptake 220 

were detected in neurons and astrocytes. Moreover, as a response to amyloid pathology, the 221 

expression of the glucose transporters Glut1 and Glut3 were increased in activated microglia 222 

(Fig. S4C). In contrast, the expression of Glut5, which is required for fructose uptake, was not 223 

significantly changed (Fig. S4C). Thus, the increased FDG uptake in activated microglia drives 224 

the FDG-PET increase in mouse models for amyloidosis (Fig. 3F). To validate PET results at 225 

a higher resolution, we performed ex vivo and in vitro autoradiography. APPki and WT mice 226 

indicated equivalent regions with off-target signals (i.e. ventricle, ependymal cells, Purkinje 227 

cells) for both tracers. Brain regions with an elevated signal in APPki mice when compared to 228 

WT mice were congruent for FDG-PET and TSPO-PET as quantified in the frontal cortex (ex 229 

vivo FDG: +44%, P < 0.0001; in vitro TSPO: +66%, P = 0.0017; ex vivo TSPO: +89%, P < 230 

0.0001; Fig. S5C & D). In summary, the combination of in vivo FDG injection and cell sorting 231 

suggests that changes in FDG-PET signals in the investigated mouse models are 232 

predominantly driven by microglia activation. 233 

234 
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Figure 3 235 

Figure 3 Microglia activation state determines the FDG uptake 236 
(A). Schematic workflow of the combined cell sorting with gamma emission measurements. 237 
(B). %-FDG uptake per cell in the isolated neuron, astrocyte, and microglia fractions from WT animals. 238 
Mean ± s.e.m. of n = 6-15. One-way ANOVA P < 0.0001; Tukey-corrected pair-wise post hoc tests. ****P 239 
< 0.0001; Neuron vs. astrocyte nonsignificant. 240 
(C). %-FDG uptake per cell in isolated neuron depl (depl: depleted), astrocyte depl, and microglia depl 241 
fractions from WT animals. Mean ± s.e.m. of n = 6-15. One-way ANOVA P <0.0001; Tukey-corrected 242 
pair-wise post hoc tests. ****P < 0.0001; Neuron depl vs. astrocyte depl nonsignificant. 243 
(D). %-FDG uptake per cell in the isolated neuron, astrocyte and microglia fractions from WT animals 244 
and Trem2-/- animals. Mean ± s.e.m. of n = 3. Two-way ANOVA P = 0.0004; Bonferroni' multiple 245 
comparisons test, ***P < 0.001. 246 
(E). %-FDG uptake per cell in the isolated neuron, astrocyte and microglia fractions from WT animals 247 
and AppNL-G-F animals (APPki). Mean ± s.e.m. of n = 3-4. Two-way ANOVA P = 0.0053; Bonferroni’ 248 
multiple comparisons test, **P < 0.01. 249 
(F). Schematic picture of FDG uptake in different cell types. 250 

251 
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Regional positive association between microglial activation and glucose uptake in patients with 252 

Alzheimer’s disease and 4-repeat tauopathies  253 

To obtain evidence for a relationship between microglial activation and FDG-PET signal in 254 

humans, we investigated direct regional associations between TSPO-PET and FDG-PET in 255 

the human brain (Table 1, fig. S6). We expected a positive association between microglial 256 

activation, measured by TSPO-PET, and the FDG-PET signal, in previously described brain 257 

regions of preserved glucose uptake in patients with Aβ-positive AD and Aβ-negative 4-repeat 258 

tauopathies (18). Levels of TSPO-PET binding in cortical brain areas of these patients were 259 

elevated when compared to controls (Fig. S7A & B), confirming our previous data in a larger 260 

sample (30). In fact, the observed patterns of relative alterations in glucose uptake confirmed 261 

a parieto-occipital decrease and a frontal increase in Aβ-positive AD patients (Fig. 4A). Aβ-262 

negative 4-repeat tauopathy patients showed minor decrease in the frontal lobe, but an 263 

unchanged FDG-PET signal in the parietal and temporal lobe (Fig. 4B). The relatively 264 

preserved frontal lobe in AD patients showed a significant positive association between TSPO- 265 

and FDG-PET quantification (Fig. 4C & E, R = 0.6558, P = 0.0395, partial correlation controlled 266 

for age and sex). Additionally, the relatively preserved parietal lobe in 4-repeat tauopathy 267 

patients likewise indicated a significant positive association between TSPO- and FDG-PET 268 

quantification (Fig. 4D & F, R = 0.4716, P = 0.0415, partial correlation controlled for age and 269 

sex). These data suggest that microglial activation is coupled to the elevated FDG-PET signal 270 

in regions without significant neuronal injury. Parietal and temporal brain regions in patients 271 

with AD, and frontal and temporal brain regions in 4-repeat tauopathy patients did not indicate 272 

significant associations between TSPO- and FDG-PET quantification (Fig. 4E & F), implying 273 

that neuronal function is still the primary modifier of FDG-PET results and microglial glucose 274 

uptake is an additive factor. This assumption was also supported by the magnitude of the 275 

correlation between TSPO- and FDG-PET in subregions of frontal, parietal, and temporal 276 

lobes, which was driven significantly by the degree of regional neuronal injury (Fig. 4G, R = 277 

0.346, P = 0.0289). Validation analyses with dynamic TSPO-PET imaging in a small 278 

subsample of patients with 4-repeat tauopathies and application of different normalization 279 
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methods for PET mirrored the main results (Fig. S7C-F). Thus, our data suggest that the 280 

coupling between microglial activation and glucose uptake is changing with progressing 281 

neuronal dysfunction. Moreover, this supports our conclusion that microglia activity 282 

significantly modifies FDG-PET signal in brains/regions without obvious neurodegeneration. 283 

Thus, in humans, the FDG-PET signal is not only driven by neuronal activity but also 284 

determined by microglial activity, potentially explaining the transient regional FDG-PET 285 

elevation in the early stage of AD.  286 

 287 

Table 1 Demographics and details of the human cohort 288 

 289 
AD = Alzheimer’s disease; CBS = corticobasal syndrome; PSP = progressive supranuclear palsy; RS = 290 
Richardson syndrome; 4RT = 4-repeat tauopathies; TSPO = 18 kDa translocator protein; FDG = 2-291 
deoxy-2-[18F]fluoro-d-glucose; PSPRS = PSP rating scale; y = years; m = months; n = sample size; 292 
MoCA = Montreal Cognitive Assessment; n.a. = not available; HAB = high affinity binder; MAB = medium 293 
affinity binder. 294 
  295 

Demographics 4RT 
AD 

pathophysiology 

Controls 

(TSPO) 

Controls 

(FDG) 

n 21 12 14 18 

Age (y) 69.2 ± 7.7 65.6 ± 8.7 70.3 ± 7.5 
70.0 ± 

11.1 

Sex 10 ♀ / 11 ♂ 8 ♀ / 4 ♂ 7 ♀ / 7 ♂ 
7 ♀ / 11 

♂ 

Aβ positivity 0 (0%) 12 (100%) 0 (0%) n.a. 

rs6971 HAB: 15 / MAB: 6 HAB: 8 / MAB: 4 HAB: 6 / MAB: 8 n.a. 

PSPRS 28.6 ± 12.5 24.4 ± 3.2 n.a. n.a. 

Disease duration 

(m) 
23.0 ± 15.5 21.0 ± 14.2 n.a. n.a. 

MoCA 22.4 ± 4.5 14.4 ± 7.5 29.0 ± 1.0 30 ± 0 

Time interval 

between FDG- and 

TSPO-PET (m) 

1.9 ± 2.8 3.2 ± 3.4 n.a. n.a. 

Diagnosis 
Possible 4RT n=6, 

Probable 4RT n=15 

Typical AD n=7, 

AD-CBS n=5 
n.a. n.a. 
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Figure 4 296 

 297 
Figure 4 Preserved brain regions in patients with Alzheimer's disease and 4-repeat 298 
tauopathies show an association between microglia activation and glucose uptake 299 
(A & B). Increases and decreases of FDG-PET in patients with Alzheimer’s disease (AD, n = 12) (A) or 300 
4-repeat tauopathies (4RT, n = 21) (B) when compared to healthy controls (n = 18). Surface projections 301 
are shown from lateral and medial views. SPM: statistical parametric mapping, T: T-score, R: right, L: 302 
left. 303 
(C & D). Regional correlations between FDG-PET and TSPO-PET in patients with AD (C) or 4-repeat 304 
tauopathies (D). R values are reprojected on the cortical surface (n=56 cortical regions). R: Pearson's 305 
correlation coefficient. 306 
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(E & F). Correlation plots of FDG-PET and TSPO-PET in different regions of AD patients (E) and 4R 307 
tauopathy patients (F), adjusted for age and sex.  308 
(G). Association between regional neuronal injury (defined by the FDG-PET Z-score) and the FDG-309 
TSPO correlation. N = 20 regions per patient group.  310 

311 
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Discussion 312 

We provide direct evidence that the FDG-PET signal is substantially affected by microglial 313 

glucose uptake. We demonstrate that the FDG-PET signal increase in mouse models for 314 

amyloidosis is mainly driven by activated microglia. This is supported by our finding that the 315 

elevated FDG-PET signal in PS2APP was entirely abolished by PLX5622-induced microglia 316 

depletion. This observation is further supported by the positive correlation between the 317 

longitudinal changes of FDG-PET and the changes of the TSPO-PET signal in PLX5622-318 

treated PS2APP mice. Our novel approach of FDG measurements after cell isolation 319 

confirmed that the activated microglia from APPki mice display higher glucose uptake 320 

compared to microglia isolated from WT animals. The novelty of this combinatorial approach 321 

consists in the possibilty to measure a direct surrogate of FDG uptake in vivo at the cellular 322 

resolution of microglia and other cell types. This is granted by hexokinase-mediated 323 

phosphorylation after the uptake phase, where FDG is trapped within the cells during the first 324 

minutes after injection. The gamma emission recordings were normalized to the number of live 325 

cells after isolation. Hence, the measured gamma emission is proportional to the actual 326 

glucose uptake at the cellular resolution in vivo. Thus, the increased glucose uptake in single 327 

activated microglia is attributable to the increased FDG-PET signal in mouse models of 328 

amyloidosis. We also showed that neuronal and astrocyte FDG uptake are similar between 329 

APPki and WT animals. We are aware that our isolation method misses the neuronal 330 

processes and synapses which may lead to underestimated neuronal FDG uptake in direct 331 

comparison of different cell types. In this regard axonal terminals are the sites of increased 332 

glucose utilization in response to neuronal firing (31), and a limitation of our study is the lack 333 

of resolution of synaptic glucose uptake. However, the combined consideration of cell sorting 334 

data and longitudinal microglia depletion relativized this limitation. PLX5622 treatment is likely 335 

to have little side-effects on neurons, as synaptic density is unchanged in WT animals between 336 

vehicle and PLX5622-treated groups. In fact, PLX5622 treatment even rescued the reduced 337 

synaptic density in PS2APP mice, implicating reduced synaptic pruning after microglia 338 

removal, which is in line with the earlier observed memory retention after PLX5622 treatment 339 
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(32). Thus, the amelioration of the FDG-PET signal increase upon microglial depletion in 340 

PS2APP mice occurs in the presence of a synaptic rescue, making an explanation of our 341 

findings by synaptic loss unlikely. Furthermore, since both hypermetabolism (13, 14) and 342 

reduced synaptic density (33, 34) are well-known features of mouse models of amyloidosis, it 343 

is less likely that the synaptic glucose uptake of neurons is another key contributor of the 344 

observed increased cerebral glucose uptake in APPki mice. On the other hand, the 345 

hyperactivate neurons around amyloid plaques could potentially contribute to the increased 346 

energy demand in models of amyloidosis (35). However, the direct measure of single cell 347 

microglial FDG emission argues that the increased microglial glucose uptake is at least one of 348 

the main contributors of the elevated FDG-PET signal in APPki animals. 349 

We further confirmed the microglia dependent FDG-PET signal increase in mouse models of 350 

amyloidosis by showing that the elevated FDG-PET signal of APPPS1 mice is also relieved in 351 

mice lacking the microglial-gene Trem2. Trem2-deficient microglia express higher levels of 352 

homeostatic makers and fail to acquire the DAM signature when facing challenges like Aβ 353 

pathology (8, 27, 36). Furthermore, human iPSC-derived microglia expressing a Trem2 loss-354 

of-function mutation display reduced oxidative phosphorylation and glycolytic capacity, and fail 355 

to switch from oxidative phosphorylation to aerobic glycolysis in response to pro-inflammatory 356 

stimuli (37). Glucose uptake is reduced in Trem2-deficient microglia but no uptake differences 357 

were observed in neurons or astrocytes. This suggests that the reduced glucose utilization in 358 

Trem2-/- microglia contribute to the FDG-PET signal decrease of Trem2-deficient mice at 12 359 

months of age, similar to mice with a Trem2 loss-of-function mutation (12). Taken together, the 360 

altered glucose uptake of microglia is responsible for both the FDG-PET signal decrease in 361 

Trem2-deficient mice and the FDG-PET signal increase in mouse models of amyloidosis. The 362 

relevance of these findings is supported by the observation of elevated glucose metabolism-363 

related proteins in microglia of AD patients (38).  364 

 365 
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Further studies need to address the consequence and the detailed mechanism of glucose 366 

metabolism regulation in microglia. Proteomic analysis indicated an up-regulation of 367 

carbohydrate metabolism in microglia from 12-month-old mice with amyloidosis (39). Our 368 

findings of an increased expression of the selective glucose transporters Glut1 and Glut3 in 369 

contrast to the decreased expression of the fructose transporter Glut5 in isolated microglia 370 

from mice with amyloidosis support this change in metabolic activity since Glut5 was described 371 

as a marker for resting microglia in humans and mice (40, 41). Consistent with this, Glut1 372 

facilitates glucose uptake in microglia under inflammatory conditions (42). However, we note 373 

that the fate of glucose cannot be determined using FDG-PET. This needs to be considered 374 

since activated microglia and other activated immune cells are characterized by aerobic 375 

glycolysis whereas homeostatic microglia use oxidative phosphorylation with a much higher 376 

ATP yield (43-45). In addition, glucose is sequestrated away from ATP generation into 377 

glycogen in pro-inflammatory microglia (46). Therefore, we want to point out that our results 378 

suggest that microglia activity significantly influences the FDG-PET signal by changing the net 379 

glucose uptake, but these findings cannot be used to allow conclusions on energy metabolism 380 

in general. Interestingly, the amount of glucose taken up by microglia from WT mice appeared 381 

to be much higher when compared to astrocyte. Further studies need to elucidate if this energy 382 

stock is consumed by microglia themselves or by other cells. It is tempting to speculate that 383 

microglia might metabolically support neurons similar to the well know astrocyte-neuron lactate 384 

shuttle (47) and oligodendrocyte-neuron lactate shuttle (48, 49). 385 

The impact of microglial FDG uptake on the overall FDG-PET signal in the face of brain 386 

pathology (i.e., amyloidosis) may partly explain previous reports of positive associations 387 

between PET-assessed Aβ levels and FDG-PET in the human brain at early disease stages 388 

of AD (16-20). Previous studies have argued that i) higher regional brain activity may either 389 

drive Aβ accumulation (50, 51) or ii) that Aβ accumulation induces neuronal 390 

hyperactivity/hyperexcitability (52, 53), thus resulting in FDG-PET increases. Our sample size 391 

of AD patients was not large enough to test for interaction effects of the sigmoidal increases 392 

of fibrillar Aβ pathology during AD progression (54) on the association between microglial 393 
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activation during the time course of AD (55) and FDG-PET. Nonetheless, we find a positive 394 

direct association between elevated TSPO-PET and FDG-PET signal increases in brain 395 

regions with amyloidosis and without significant neuronal injury in AD patients even when using 396 

a very conservative PET quantification apporach. Taken together with our preclinical data, we 397 

conclude that microglia, which are activated during amyloidosis (56, 57), stimulate glucose 398 

uptake and thus further drive the increase of FDG-PET signal. Importantly, we show that this 399 

link between microglial activation and glucose uptake is not restricted to amyloidosis since a 400 

positive association between FDG-PET and TSPO-PET could be replicated in 4-repeat 401 

tauopathy patients. Thus, our findings of elevated FDG uptake apprear to be a general 402 

phenomenon of microglial response. As a limitation, it needs to be considered that most 403 

imaging data were acquired in a late static window which can be biased by changes in cerebral 404 

blood flow. Thus, although we were able to validate our main findings by dynamic imaging in 405 

mice and in parts of the human data, some degree of the observed correlations between FDG-406 

PET and TSPO-PET could still be explained by communtated changes in cerebral blood flow. 407 

We note that the human brain comprises a higher neuron to non-neuronal cell ratio when 408 

compared to a weight normalized brain of rodents (58). Thus, the relative fraction of glucose 409 

uptake by microglia is probably less pronounced in humans when compared to rodents. In this 410 

regard, FDG uptake and microglial activity did not correlate in brain regions with significant 411 

neuronal injury, indicating that neuronal activity is still the most relevant driving force of the 412 

human FDG-PET signal once neurodegeneration becomes apparent. However, the combined 413 

translational data suggests a general contribution of microglia to the FDG-PET signal across 414 

neurodegenerative conditions. Consequently, elevated microglial FDG uptake at early stages 415 

of diseases determines larger parts of the FDG-PET signal and this could explain why 416 

structural atrophy is not necessarily accompanied by metabolic decline (18). Since the FDG-417 

PET signals also refect microglial activity, the microglial activation states must be recognized 418 

when using FDG-PET imaging for diagnostic work-up and scientific trials. 419 

420 
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Materials and Methods  421 

Animals and treatment 422 

All animal experiments were performed in compliance with the National Guidelines for Animal 423 

Protection, Germany and with the approval of the regional animal committee (Regierung von 424 

Oberbayern) overseen by a veterinarian. Animals were housed in a temperature- and humidity-425 

controlled environment with 12h light-dark cycle, with free access to food and water. 426 

Homozygous female PS2APP (APPswe/PS2) mice (24) and age-matched wild-type (WT) were 427 

used for pharmacological depletion of microglia by CSF1R inhibition (25). Mice received FDG-428 

PET, TSPO-PET, and β-amyloid-PET (Aβ-PET) at 9.5 months of age and were randomized 429 

into treatment or vehicle groups per cage at 10 months of age. CSF1R inhibition was performed 430 

by administration of PLX5622 (1200 ppm) for seven weeks, and follow-up PET scans were 431 

performed in the last week of treatment. Brain extraction for immunohistochemistry analyses 432 

was performed on the last day of treatment. Serial FDG-PET and TSPO-PET scans of female 433 

APPPS1 (APPPS1-21) mice (59) and age-matched WT with intact or deficient Trem2 (Trem2+/+ 434 

APPPS1, Trem2-/- APPPS1, Trem2+/+, Trem2-/-) were analyzed at 6 and 12 months of age (26). 435 

WT and Trem2-/- between 7 and 11 months of age served for isolation experiments of microglia, 436 

astrocytes, and neurons. AppNL-G-F(APPki) mice (60, 61) underwent FDG-PET at 10 months of 437 

age. APPki mice at 10 months of age served for isolation experiments of microglia, astrocytes, 438 

and neurons. 439 

 440 

Small animal PET 441 

All small animal positron emission tomography (μPET) procedures followed an established 442 

standardized protocol for radiochemistry, acquisition, and post-processing (13, 62). In brief, 443 

18F-FDG µPET (FDG-PET) with an emission window of 30-60 mins post-injection was used to 444 

measure cerebral glucose uptake, 18F-GE-180 TSPO μPET (TSPO-PET) with an emission 445 

window of 60-90 mins post-injection was used to measure cerebral microglial activity, and 18F-446 
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florbetaben β-amyloid μPET (Aβ-PET) with an emission window of 30-60 mins post-injection 447 

was used for assessment of fibrillar cerebral amyloidosis. All analyses were performed by 448 

PMOD (V3.5, PMOD Technologies, Basel, Switzerland) using tracer specific templates for 449 

spatial normalization (62). Normalization of injected activity was performed by a two-step 450 

process for FDG-PET and TSPO-PET to consider global and region-specific effects. First, 451 

standardized uptake values (SUV) were generated either by conventional division by the 452 

injected dose and multiplication by the bodyweight (FDG-PET) or by the previously validated 453 

myocardium correction method (63) (TSPO-PET). Second, intragroup stabilization was 454 

performed by centering SUV values to established intracerebral reference tissues (13, 26, 64), 455 

to allow robust correlation analyses between different tracers. Normalization of injected activity 456 

for Aβ-PET in PS2APP mice was performed by reference region scaling (13). μPET estimates 457 

deriving from a standardized bilateral neocortical target volume of interest (19 mm³) (65) were 458 

extracted from all individual mice. All small animal PET experiments were performed with 459 

isoflurane anesthesia (1.5% at time of tracer injection and during imaging; delivery 3.5 L/min). 460 

To exclude anesthesia as a major confounder of our findings, we performed a validation 461 

experiment of FDG-PET imaging with awake injection of the tracer, using n=4 PLX5622 treated 462 

PS2APP and n=3 vehicle treated PS2APP mice at the follow-up time-point (under treatment). 463 

Isoflurane anesthesia was induced 15 min after injection of FDG in order to avoid effects of 464 

isoflurane during the FDG uptake phase. PET imaging was performed from 30 to 60 min p.i. 465 

as in the main experiment. Analysis of FDG-PET images of the awake injection experiment 466 

was equal to the main experiment. To exclude changes in cerebral blood flow as a major 467 

confounder of the correlations between glucose uptake and microglial activation, we performed 468 

dynamic FDG-PET imaging (0-60 min) and dynamic TSPO-PET imaging (0-90 min) in a 469 

validation cohort of n=4 Trem2+/+ APPPS1 and n=4 Trem2-/- APPPS1 mice at the age of 15.5 470 

months. Framing was 3x10s, 3x30s, 8x60s, 10x300s for FDG-PET and 3x10s, 3x30s, 8x60s, 471 

10x300s, 3x600s for TSPO-PET with all other reconstruction parameters remaining equal. 472 

Coregistration was performed via the late imaging windows as in the main experiment with 473 

application of the saved transformations to the full dynamic data file (62). We calculated volume 474 
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of distribution (VT) images with an image derived input function (66) using the methodology 475 

described by Logan et al. implemented in PMOD (67). The plasma curve was obtained from a 476 

standardized bilateral VOI placed in both carotid arteries. A maximum error of 10% and a VT 477 

threshold of 0 were selected for modelling of the full dynamic imaging data. The VOI-based 478 

analysis of VT images was performed equal to the SUV and SUVr PET analyses. Cortical VT 479 

values of FDG-PET and TSPO-PET of all mice were correlated with each other to test if the 480 

observed association between glucose uptake and microglial activation also holds true in 481 

cerebral blood flow adjusted quantification.   482 

 483 

Autoradiography 484 

Ex vivo and in vitro autoradiography experiments were performed to validate PET results at a 485 

higher resolution. n=2-3 AppNL-G-F mice and WT mice at 16-18 months of age were used and 486 

n=2-4 randomly selected brain sections per animal were analyzed for quantification. 487 

Autoradiography protocols were similar to previous reports of our group and detailed 488 

descriptions are provided there (13, 68, 69). In brief, we used 20 µm sagittal sections obtained 489 

via cutting in a Leica CM 1510-1 Cryostat (Leica Microsystems, Nussloch Germany), thermally 490 

equilibrated at – 20 ºC for 30 min prior to cutting. The procedure was performed after injection 491 

of ~15 MBq 18F-FDG or ~15 MBq 18F-GE-180 and the brain was extracted after stopping the 492 

circulation in the middle of the PET imaging window (45 min p.i. for 18F-FDG; 75 min p.i. for 493 

18F-GE-180). In vitro autoradiography with 18F-GE-180 was performed on the same sections 494 

that were used for ex vivo FDG autoradiography in order to prove that the FDG signal 495 

corresponds to sites of microglial activation. Here, the section was incubated with 18F-GE-180 496 

at a concentration of ~2 nM for 60 min, followed by washing with Tris-HCl buffer (50 nM, pH 497 

7.4). Ex vivo and in vitro autoradiography sections were placed on Fujifilm BAS cassette2 2025 498 

imaging plates. The plates were exposed for six hours and then scanned at 25 µm resolution 499 

with the Raytest equipment (CR-35-BIO, Dürr Medical, Germany). Resulting images were 500 

analyzed with AIDA image analysing software, V4.50 (Raytest GmbH, Straubenhardt, 501 
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Germany). For all analyzed sections, we used manually drawn cerebellar and frontal cortical 502 

regions of interest and we calculated a frontal cortex to cerebellum ratio. The operator was 503 

blind to the genotype, but we note that the genotype specific differences in tracer uptake 504 

between AppNL-G-F and WT mice were likely identified by visual inspection. The cortex to 505 

cerebellum ratios were compared between AppNL-G-F and WT mice by an unpaired Student’s t-506 

test for each autoradiography modality. 507 

 508 

Human PET 509 

Twelve patients with fibrillar amyloidosis (AD continuum and corticobasal syndrome) and 21 510 

patients with possible or probable 4-repeat tauopathies (corticobasal syndrome and 511 

progressive supranuclear palsy) were available for within subject analysis of FDG-PET and 512 

TSPO-PET. Control data derived from 18 (FDG-PET) and 14 (TSPO-PET) age- and sex-513 

matched individuals without objective memory impairment and with intact motor function (Table 514 

1). Patients were enrolled in the interdisciplinary AD study "Activity of Cerebral Networks, 515 

Amyloid and Microglia in Aging and AD (ActiGliA)" and were scanned at the Department of 516 

Nuclear Medicine, LMU, using a Biograph 64 PET/CT scanner (Siemens, Erlangen, Germany). 517 

Aβ-PET was performed in all patients using 18F-flutemetamol. PET acquisition and PET data 518 

analyses (ethics-applications: 17-569 & 17-755) were approved by the local institutional ethics 519 

committee (LMU Munich) and the German radiation protection authorities. All participants 520 

provided written informed consent before the PET scans. Before each PET acquisition, a low-521 

dose CT scan was performed for attenuation correction. Emission data of FDG-PET were 522 

acquired from 30 to 50 minutes post-injection according to the EANM protocol (70). Emission 523 

data of TSPO-PET were acquired from 60 to 80 minutes (71) after the injection of 191 ± 10 524 

MBq 18F-GE-180 as an intravenous bolus. The specific activity was >1500 GBq/μmol at the 525 

end of radiosynthesis, and the injected mass was 0.13 ± 0.05 nmol. Emission data of Aβ-PET 526 

were acquired from 90 to 110 minutes after injection of 190 ± 12 MBq 18F-flutemetamol. Images 527 

were reconstructed using a 3-dimensional ordered subsets expectation maximization algorithm 528 
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(16 iterations, 4 subsets, 4 mm gaussian filter) with a matrix size of 336 × 336 × 109, and a 529 

voxel size of 1.018 × 1.018 × 2.027 mm. Standard corrections for attenuation, scatter, decay, 530 

and random counts were applied.  531 

FDG-PET and TSPO-PET data were analyzed using PMOD. Spatial normalization was 532 

performed to tracer specific templates in the Montreal Neurology Institute (MNI) space 533 

analogous to mouse data processing. All images were normalized by global mean scaling and 534 

smoothed with a Gaussian filter of 6x6x6 mm to account for intersubject differences in 535 

anatomy. The Hammers atlas was used for region definition (72), and bilobar frontal, temporal 536 

and parietal cortical target regions were defined as described previously (73). Regional 537 

associations of FDG-PET and TSPO-PET in predefined lobar volumes of interest were 538 

calculated by Pearson's coefficient of correlation (R). Correlation coefficients of single cortical 539 

Hammers atlas regions (n=56) were computed for visualization purposes and correlation 540 

analyses with neuronal injury. The degree of regional neuronal injury (expressed as FDG z-541 

score in patients vs. controls) was correlated with the degree of association between FDG-542 

PET and TSPO-PET for all single brain regions of the Hammers atlas above a volume of 10 543 

mm³ (n=20). For the purpose of cerebral blood flow adjusted validation, we analyzed a subset 544 

of n=5 patients with 4R-tauopathies that received dynamic TSPO-PET imaging (0-90 min). We 545 

analyzed the agreement between distribution volume ratios of TSPO-PET (DVR, simplified 546 

reference tissue modelling 2 (74)) and the primarily used 60-80 min SUVr quantification of 547 

TSPO-PET for frontal, temporal and parietal regions of interest. Additionally, we analyzed the 548 

correlation between TSPO-PET DVR (n=5) and SUVr (n=21) with FDG-PET SUVr in the 549 

parietal lobe, to test if the agreement between glucose uptake and microglial activation is also 550 

present when a kinetic modelling quantification is applied to TSPO-PET. Furthermore, in both 551 

analyses, we confirmed the results obtained by scaling through the global mean (subsequently 552 

performed after DVR calculation and for generation of SUVr) with normalization by the 553 

cerebellum as a reference region (DVR and SUVr). In addition to the relative quantification 554 

approaches, we compared TSPO-PET SUV quantification (60-80 min time-window) of all 555 
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target regions (frontal, temporal, parietal) between patients with AD and 4-repeat tauopathies 556 

against controls. 557 

Aβ-PET was assessed by a visual read (one expert reader), and the decision of Aβ-558 

positivity/negativity was supported by a software-driven approach implemented in HERMES 559 

Gold (V4.17, HERMES Medical Solutions AB, Stockholm, Sweden). One positive evaluated 560 

target region (frontal, temporal, parietal, posterior cingulate) defined the scan as positive.  561 

 562 

Immunofluorescence  563 

After conducting the last µPET scans, each mouse was perfused transcardially with ice-cold 564 

phosphate-buffered saline (PBS). The right hemibrains were frozen at -80°C until further use. 565 

The left hemibrains were immersion-fixed with 4% paraformaldehyde overnight at 4°C. 566 

Subsequently, 50 µm-thick hemispherical parasagittal slices were prepared using a vibratome 567 

(VT1000S, Leica, Germany). Three to five paramedian slices from each animal were used in 568 

a free-floating immunofluorescence labeling approach. The sections were incubated in 2% 569 

Triton X-100 in PBS (2% PBST) at 4°C for 16-20 hours for permeabilization, following by 570 

blocking with 10% normal goat serum (NGS) in 0.3% PBST for 2-3 h at room temperature. The 571 

slices were incubated with primary antibodies diluted in a blocking solution of 5% NGS in 0.3% 572 

PBST for 48h (SV2A; 1:200, #ab32942; Abcam, Germany) or 24h (Iba1; 1:200, #019-19741; 573 

FUJIFILM Wako Chemicals. USA) at 4°C. After primary target labeling, unbound antibodies 574 

were removed by three consecutive washing steps with PBS for 15 minutes each before 575 

secondary antibody goat anti-rabbit AlexaFlour®488 (#A11008; Thermo Fisher Scientific, 576 

Germany) incubation in 1:1000 dilutions at room temperature for 4 h. For nuclear counterstain, 577 

DAPI (#D9542; Sigma-Aldrich, Germany) was applied to the free-floating sections in a 1:1000 578 

PBS dilution for 20 minutes at room temperature. Finally, slices were rewashed and mounted 579 

on Superfrost-plus® slides (Thermo Fisher Scientific, Germany) using Fluorescence Mounting 580 

Medium (#S302380-2, Agilent Dako, Germany) with #1.5H high-precision imaging glass 581 

coverslips (#48393-059, VWR, Germany). 582 
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 583 

Image acquisition and analysis 584 

Synaptic images were acquired with constant imaging settings using a Zeiss LSM780 confocal 585 

system (Zeiss, Germany) equipped with a Plan-Apochromat 40X (NA 1.4, DIC M27, oil 586 

immersion) objective and a user interface provided with the ZEN Black software. For 587 

quantification of synaptic puncta, nine high-resolution 2D planes of ROIs of (75.87 x 75.87) 588 

µm2 from the hippocampus, Stratum radiatum of the CA1, were randomly sampled among 2-3 589 

slices of each animal. For the examination of neocortical regions, we randomly sampled nine 590 

high-resolution 2D planes with ROIs of (101.21 x 101.21) µm2 in the SSC LII/LIII, which was 591 

located dorsally from the inspected hippocampal area in all 2-3 slices per animal. Image 592 

properties were given as follows: pixel dwell = 0.39 µs, lateral resolution = 0.037 µm, image 593 

depth = 16-bit, dpi = 2048. Single images were processed by custom IJ2-written macro scripts 594 

in the Fiji/ImageJ, which included background subtraction, thresholding with binarization, and 595 

the 'Analyze Particles' command to obtain single measures of puncta count.  596 

For microglial counts in PLX5622 or vehicle-treated animals, we used the LSM780 confocal 597 

system equipped with a Plan-Apochromat 20X/0.8 M27 objective. Wide horizontal image 598 

stacks were acquired covering either the somatosensory cortex (SSC) with adjacent 599 

neocortical areas of size (1889.32 x 944.66 x 15) µm3 or the whole hippocampal CA of size 600 

(1889.32 x 472.33 x 15) µm3 of each respective brain slice in one frame (z-steps = 1 µm, pixel 601 

dwell = 0.64 µs, lateral resolution = 0.231 µm, image depth = 12-bit, dpi = 1024). These large 602 

image stacks were imported into Fiji/ImageJ, where 3 VOIs per region of size 400 µm were 603 

sampled, projected in maximum intensity mode. Then microglial cell bodies were counted 604 

manually. Final microglia density values were expressed as the quotient of Iba1-positive 605 

microglia and the frame size. For this analysis, we compared three slices of the brains from 3 606 

animals out of each cohort. 607 

 608 
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Mouse brain dissociation 609 

Adult Brain Dissociation Kit, mouse, and rat (Miltenyi Biotec, 130-107-677) was used for adult 610 

mouse brain dissociation according to the manufacturer's instructions. Adult mouse brains 611 

were dissected out and briefly washed with PBS. The brains were cut into eight pieces and 612 

dissociated with enzyme mix 1 and 2 using gentleMACS™ Octo Dissociator (Miltenyi Biotec, 613 

130-096-427). The dissociated cell suspension was applied to pre-wet 100 µm Cell Strainer 614 

(Falcon, 352360). The cell pellet was resuspended using cold PBS and cold debris removal 615 

solution. Cold PBS was gently overlaid on the cell suspension. Centrifuge at 4°C and 3000×g 616 

for 10 minutes with acceleration and deceleration at 5. The two top phages were removed 617 

entirely. The cell pellets were collected and resuspended with 1 ml cold red blood cell removal 618 

solution followed by 10 minutes incubation. Cell pellets were collected for further applications.  619 

 620 

Isolation of neurons 621 

Neuron Isolation Kit, mouse (Miltenyi Biotec, 130-115-390), was used according to the 622 

manufacturer's instructions. The prepared cell pellets were resuspended in 80 µl of PBS-0.5% 623 

BSA (Bovine Serum Albumin) buffer per 107 total cells. 20 μL of Non-Neuronal Cells Biotin-624 

Antibody Cocktail was added and incubated for 5 minutes in the dark at 4°C. Cells were 625 

washed and centrifuge at 300×g for 5 minutes. Cell pellets were again resuspended in 80 μL 626 

of PBS-0.5% BSA buffer per 107 total cells. 20 μL of Anti-Biotin MicroBeads were added and 627 

incubated for 10 minutes in the dark at 4°C. The volume was adjusted to 500 µl per 107 total 628 

cells with PBS-0.5% BSA buffer and then proceed to magnetic separation. The pre-wet LS 629 

columns (Miltenyi Biotec, 130-042-401) were placed at QuadroMACS™ Separator (Miltenyi 630 

Biotec, 130-090-976). The cell suspensions were applied onto the column. The columns were 631 

washed with 2 × 1 ml PBS-0.5% BSA buffer. The flow-through containing the unlabeled cells 632 

were collected as the neuron-enriched fractions. The columns were removed from the 633 

magnetic field, and the non-neuronal cells were flashed out using 3 ml of PBS-0.5% BSA 634 

buffer. 635 
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 636 

Isolation of astrocytes 637 

Adult Brain Dissociation Kit, mouse, and rat (Miltenyi Biotec, 130-107-677) was used according 638 

to the manufacturer's instructions. The prepared cell pellets were resuspended in 80 µl of 639 

AstroMACS separation buffer (Miltenyi Biotec, 130-117-336) per 107 total cells. 10 μL of FcR 640 

blocking reagent was added and incubated for 10 minutes in the dark at 4°C. 10 μL of Anti-641 

ACSA-2 MicroBeads was added and incubated for 15 minutes in the dark at 4°C. Cells were 642 

washed by adding 1 mL of AstroMACS separation buffer and centrifuge at 300×g for 5 minutes. 643 

Cell pellets were resuspended using 500 μL of AstroMACS separation buffer. The pre-wet MS 644 

columns (Miltenyi Biotec, 130-042-201) were placed at OctoMACS Separator (Miltenyi Biotec, 645 

130-042-109). The cell suspensions were applied onto the column, followed by washing with 646 

3 × 500 µL of AstroMACS separation buffer. The flow-through was collected containing non-647 

astrocytic cells as an astrocyte-depleted fraction. The columns were removed from the 648 

magnetic field, and the astrocytes were flashed out using 3 ml of AstroMACS separation buffer. 649 

 650 

Isolation of microglia 651 

Microglia were isolated from animals using CD11b microbeads (Miltenyi Biotec, 130-093-634) 652 

and a MACS separation system (Miltenyi Biotec) as described (75, 76). The prepared cell 653 

pellets were resuspended in 90 µl of PBS-0.5% BSA buffer per 107 total cells. 10 µl of CD11b 654 

microBeads per 107 total cells were added and incubated for 15 minutes in the dark at 4°C. 655 

Cells were washed by adding 1−2 mL of buffer per 107 cells and centrifuge at 300×g for 10 656 

minutes. The cell pellets were resuspended in 500 µl of PBS-0.5% BSA. The pre-wet LS 657 

columns were placed at QuadroMACS™ Separator. The cell suspensions were applied onto 658 

the column. The columns were washed with 3 × 3 ml PBS-0.5% BSA buffer. The flow-through 659 

containing the unlabeled cells were collected as the microglia-depleted fractions. The columns 660 
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were removed from the magnetic field, and microglia were flashed out using 5 ml of PBS-0.5% 661 

BSA buffer. 662 

 663 

Gamma emission measurements  664 

Radioactivity concentrations of cell pellets were measured in a gamma counter (Cobra 665 

Quantum 5002, Packard) cross-calibrated to the activity in the whole brain, with decay-666 

correction to time of tracer injection for final activity calculations. 667 

 668 

RNA isolation and quantitative real-time PCR 669 

Total RNA was isolated from 400.000 microglial cells using the RNeasy Plus Micro Kit (Qiagen, 670 

Cat No./ID: 74034) according to the manufacturers protocol. RNA quality and concentration 671 

were determined with the Bioanalyzer 2100 (Agilent). RNA integrity numbers varied between 672 

8.3 and 9.3. cDNA was synthesized from 200 ng of total RNA using the M-MLV reverse 673 

transcriptase (Promega, cat No. M1701) with random nonamer primers for 1 h at 42°C followed 674 

by 15 min heat inactivation at 95 °C. Quantification was performed with the 7500 Fast Real 675 

Time PCR System (Applied Biosystems) using the following probes targeting glucose 676 

transporters (Integrated DNA Technologies): Slc2a1 (Mm.PT.58.7590689), Slc2a2 677 

(Mm.PT.58.45874027), Slc2a3 (Mm.PT.58.30464830), Slc2a4 (Mm.PT.58.9683859), Slc2a5 678 

(Mm.PT.58.41178805). Relative expression of target genes was normalized against 679 

endogenous controls HSP90ab1 (Mm.PT.58.43472263.g) and Actb (4352341E, Thermo 680 

Scientific). Slc2a2 and Slc2a4 were below the detection limit in the isolated microglia. 681 

 682 

Statistical analysis 683 

Data are presented as mean ± s.e.m unless otherwise stated. Statistical significance was 684 

calculated by one-way analysis of variance (ANOVA) followed by Bonferroni post hoc test for 685 

group-wise comparisons or Mann-Whitney test unless otherwise stated. When comparing 686 
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multiple groups, two-way ANOVA was applied, followed by Bonferroni's multiple comparisons 687 

tests unless otherwise stated. The correlation between FDG-PET and TSPO-PET was 688 

analyzed by simple linear regression. Age and sex were adjusted as indicated. 689 

690 
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Supplementary Materials 918 

 919 
Supplementary figure 1 920 
 921 

 922 
 923 
Fig. S1 Microglia density and synaptic density after PLX5622 treatment 924 
 925 
(A). Representative images of microglia marker Iba1 immunostaining. Scale bar, 100 μm. 926 
(B). Microglia counts in the neocortex and hippocampus. Mean ± s.e.m. of n = 3. Two-way ANOVA P = 927 
0.0002; Tukey-corrected pair-wise post hoc tests, ****P < 0.0001. 928 
(C). Representative images of synaptic density marker SV2A immunostaining. Scale bar, 20 μm. 929 
(D). SV2A positive synaptic puncta area coverage in the neocortex and hippocampus. Mean ± s.e.m. of 930 
n = 5. Two-way ANOVA P = 0.1635, n.s.: non-significant; Tukey-corrected pair-wise post hoc tests, *P 931 
< 0.05.  932 
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Supplementary figure 2 933 
 934 

 935 
 936 
 937 
Fig. S2 FDG and Aβ-PET after PLX5622 treatment 938 
 939 
(A). Coronal and axial slices show group averages of FDG-PET (SUV) of awake injected animals. 940 
(B). Quantification of cortical glucose uptake in awake animals. Mean ± s.e.m. of n = 3-4. Unpaired two-941 
tailed t test P = 0.0084. 942 
(C). Coronal and axial slices show standardized uptake value ratio maps of Aβ-PET projected upon a 943 
standard MRI template. Aβ, β-amyloid. 944 
(D). Quantification of cortical Aβ load measured by in vivo Aβ-PET. Mean ± s.e.m. of n = 8-16. One-way 945 
ANOVA; Bonferroni post hoc tests. n.s.: non-significant; ****P < 0.0001. 946 
  947 
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Supplementary figure 3 948 

 949 
 950 
Fig. S3 Dynamic FDG- and TSPO-PET imaging 951 
 952 
(A & B). Coronal and axial slices show group averages of TSPO-PET (VT) (A) and FDG-PET (VT) (B) of 953 
Trem2+/+ APPPS1 and Trem2-/- APPPS1 mice. VT: volume of distribution. 954 
(C). Positive correlation between glucose uptake (FDG-PET (VT)) and microglial activation (TSPO-PET 955 
(VT)) deriving from a blood flow adjusted quantification via kinetic modeling of dynamic acquisition with 956 
an image derived input function.  957 
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Supplementary figure 4 958 
 959 

 960 
 961 
Fig. S4 Quality controls for magnetic-activated cell sorting 962 
 963 
(A). The identity of neural cell types was verified by detection of Tuj1 for neurons, GFAP for astrocytes, 964 
and Iba1 for microglia. 965 
(B). FDG counts per cell in neuron fraction is increased along with a higher injection dose of FDG. 966 
(C). mRNA level of glucose transporters (Glut1, 3 and 5) in isolated microglia from APPPS1 and WT 967 
animals. Mean ± s.e.m. of n = 3. Two-way ANOVA P < 0.0001; Bonferroni post hoc tests, Glut5 WT vs. 968 
APPPS1 nonsignificant; ***P < 0.001; ****P < 0.0001.  969 
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Supplementary figure 5 970 

 971 
 972 
 973 
Fig. S5 FDG-PET and autoradiography in AppNL-G-F animals  974 
 975 
(A). Coronal and axial slices show group averages of FDG-PET (SUV) per group of AppNL-G-F animals 976 
(APPki) and WT projected upon a standard MRI T1 atlas. 977 
(B). Quantification of cortical glucose uptake measured by in vivo FDG-PET of WT and APPki. 978 
Mean ± s.e.m. of n = 5-10. Mann-Whitney test P = 0.0047. 979 
(C). Representative images of ex vivo and in vitro autoradiography of 18F-FDG and 18F-GE-180 (TSPO). 980 
(D). Quantification of cortex to cerebellum ratios (CTX / CBL ratio) between APPki and WT mice. 981 
Mean ± s.e.m. of n = 8-11 analyzed slices. Two-way ANOVA; Bonferroni post hoc tests, ***P < 0.001; 982 
****P < 0.0001. 983 
 984 
  985 
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Supplementary figure 6 986 
 987 
 988 
 989 

 990 
 991 
 992 
 993 
Fig. S6 CONSORT chart of patient selection 994 
 995 
CONSORT chart of patient selection. The in-house Activity of Cerebral Networks, Amyloid, and Microglia 996 
in Alzheimer's Disease (ActiGliA) cohort is composed of patients with AD, 4-repeat tauopathies, as well 997 
as healthy controls who undergo a multimodal imaging paradigm together with fluid biomarkers.  998 
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Supplementary figure 7 999 

 1000 
Fig. S7 Regional TSPO- and FDG-PET alterations and associations in patients with Alzheimer's 1001 
disease and 4-repeat tauopathies  1002 
 1003 
(A). Regional percentage changes of TSPO-PET in patients with Alzheimer’s disease (AD, n = 12) or 4-1004 
repeat tauopathies (4RT, n = 21) when compared to healthy controls (n = 16).  1005 
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(B). Quantification of TSPO-PET SUV in patients. Mean ± s.e.m. Two-way ANOVA; Post hoc analysis 1006 
is controlled for age and sex. 1007 
(C & E). Correlation between dynamic TSPO-PET imaging and SUVr quantification of TSPO-PET for 1008 
pooled frontal, temporal and parietal regions of interest. DVR: distribution volume ratio. 1009 
(D & F). Correlation between TSPO-PET DVR (n=5) and SUVr (n=21) with FDG-PET SUVr in the 1010 
parietal lobe. No adjustment for age and sex was made due to the small n of DVR data. 1011 


